728x90
반응형
제 14강. 함수공간
Function Spaces and Fourier Series
extend vector space to function space
apply Gram-Schmitt Orthogoanlization to function space
1. Hilbert Space
무한대 공간으로 생각하는 것이다. 셀 수 없이 많은 공간을 , 힐버트 스페이스라고 말한다.
- Vector inner product -> function inner product
- ->
크기(거리)도 똑같다.
(적분화)
- Hilbert space is a vector space in where vectors have finite lengths
Length and Inner Product
- For continuous functions, the summation for length is replaced with integration in a interval
Orthogonality
= 수직이다
= 수직이다
Basis ( vectors ) -> Basis ( function )
->
의 계수 = ->
If given a basis -> linear combination {'s} are Unique !
If given a function -> Series Coefficient are Unique !
Fourier Series
Orthogonal basis functions ; { } n,m : integer
=> Fourier Series is a Projection onto and
Gram-Schmitt
- Polynomial functions : are independent ,but not orthogonal for
change interval -> -1 ≤ x ≤ 1
(1)
(2) = =
-> Orthogonal
(3)
=
=
728x90
반응형