[논문읽기] 07-1. DCGAN MNIST With Tensorflow
📲PROJECT/논문읽기

[논문읽기] 07-1. DCGAN MNIST With Tensorflow

728x90
반응형
from __future__ import absolute_import, division, print_function, unicode_literals
In [0]:
!pip install tensorflow-gpu==2.0.0-beta0
Requirement already satisfied: tensorflow-gpu==2.0.0-beta0 in /usr/local/lib/python3.6/dist-packages (2.0.0b0)
Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (0.7.1)
Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (1.12.0)
Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (1.1.0)
Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (1.1.0)
Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (1.11.1)
Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (3.7.1)
Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (1.15.0)
Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (0.33.4)
Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (0.8.0)
Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (1.16.4)
Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (0.1.7)
Requirement already satisfied: tf-estimator-nightly<1.14.0.dev2019060502,>=1.14.0.dev2019060501 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (1.14.0.dev2019060501)
Requirement already satisfied: tb-nightly<1.14.0a20190604,>=1.14.0a20190603 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (1.14.0a20190603)
Requirement already satisfied: gast>=0.2.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (0.2.2)
Requirement already satisfied: keras-applications>=1.0.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu==2.0.0-beta0) (1.0.8)
Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.6.1->tensorflow-gpu==2.0.0-beta0) (41.0.1)
Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tb-nightly<1.14.0a20190604,>=1.14.0a20190603->tensorflow-gpu==2.0.0-beta0) (0.15.4)
Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tb-nightly<1.14.0a20190604,>=1.14.0a20190603->tensorflow-gpu==2.0.0-beta0) (3.1.1)
Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.6->tensorflow-gpu==2.0.0-beta0) (2.8.0)
In [0]:
import tensorflow as tf
tf.__version__
Out[0]:
'1.14.0-rc1'
In [0]:
!pip install imageio
Requirement already satisfied: imageio in /usr/local/lib/python3.6/dist-packages (2.4.1)
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from imageio) (1.16.4)
Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from imageio) (4.3.0)
Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->imageio) (0.46)
In [0]:
import glob
import imageio
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
from tensorflow.keras import layers
import time

from IPython import display
In [0]:
# Load
(train_images, train_labels),(_,_) = tf.keras.datasets.mnist.load_data()
In [0]:
train_images.shape
Out[0]:
(60000, 28, 28)
In [0]:
train_images = train_images.reshape(train_images.shape[0],28,28,1).astype('float32')
train_images = (train_images - 127.5) / 127.5   # Normalize the images to [-1,1]
In [0]:
train_images.shape
Out[0]:
(60000, 28, 28, 1)
In [0]:
BUFFER_SIZE = 60000
BATCH_SIZE = 256
In [0]:
# Batch and shuffle the data
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
In [0]:
 
In [0]:
def make_generator_model():
    model = tf.keras.Sequential()
    model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Reshape((7, 7, 256)))
    assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size

    model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
    assert model.output_shape == (None, 7, 7, 128)
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
    assert model.output_shape == (None, 14, 14, 64)
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
    assert model.output_shape == (None, 28, 28, 1)

    return model
In [0]:
generator = make_generator_model()

noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)

plt.imshow(generated_image[0, :, :, 0], cmap='gray')
Out[0]:
<matplotlib.image.AxesImage at 0x7f54d9c13438>
In [0]:
def make_discriminator_model():
    model = tf.keras.Sequential()
    model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
                                     input_shape=[28, 28, 1]))
    model.add(layers.LeakyReLU())
    model.add(layers.Dropout(0.3))

    model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
    model.add(layers.LeakyReLU())
    model.add(layers.Dropout(0.3))

    model.add(layers.Flatten())
    model.add(layers.Dense(1))

    return model
In [0]:
discriminator = make_discriminator_model()
decision = discriminator(generated_image)
print (decision)
tf.Tensor([[-0.00185123]], shape=(1, 1), dtype=float32)
In [0]:
# This method returns a helper function to compute cross entropy loss
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
In [0]:
def discriminator_loss(real_output, fake_output):
    real_loss = cross_entropy(tf.ones_like(real_output), real_output)
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
    total_loss = real_loss + fake_loss
    return total_loss
In [0]:
def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)
In [0]:
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
In [0]:
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
                                 discriminator_optimizer=discriminator_optimizer,
                                 generator=generator,
                                 discriminator=discriminator)
In [0]:
EPOCHS = 50
noise_dim = 100
num_examples_to_generate = 16

# We will reuse this seed overtime (so it's easier)
# to visualize progress in the animated GIF)
seed = tf.random.normal([num_examples_to_generate, noise_dim])
In [0]:
# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def train_step(images):
    noise = tf.random.normal([BATCH_SIZE, noise_dim])

    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
      generated_images = generator(noise, training=True)

      real_output = discriminator(images, training=True)
      fake_output = discriminator(generated_images, training=True)

      gen_loss = generator_loss(fake_output)
      disc_loss = discriminator_loss(real_output, fake_output)

    gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
    gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

    generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
In [0]:
def train(dataset, epochs):
  for epoch in range(epochs):
    start = time.time()

    for image_batch in dataset:
      train_step(image_batch)

    # Produce images for the GIF as we go
    display.clear_output(wait=True)
    generate_and_save_images(generator,
                             epoch + 1,
                             seed)

    # Save the model every 15 epochs
    if (epoch + 1) % 15 == 0:
      checkpoint.save(file_prefix = checkpoint_prefix)

    print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))

  # Generate after the final epoch
  display.clear_output(wait=True)
  generate_and_save_images(generator,
                           epochs,
                           seed)
In [0]:
def generate_and_save_images(model, epoch, test_input):
  # Notice `training` is set to False.
  # This is so all layers run in inference mode (batchnorm).
  predictions = model(test_input, training=False)

  fig = plt.figure(figsize=(4,4))

  for i in range(predictions.shape[0]):
      plt.subplot(4, 4, i+1)
      plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
      plt.axis('off')

  plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
  plt.show()
In [0]:
%%time
train(train_dataset, EPOCHS)
CPU times: user 2min 48s, sys: 44.4 s, total: 3min 33s
Wall time: 10min 56s
In [0]:
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
Out[0]:
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x7f5487a6b7f0>
In [0]:
# GIF
def display_img(epoch_no):
  return PIL.Image.open('image_at_epoch_{:04d}.png'.format(epoch_no))
In [0]:
display_img(EPOCHS)
Out[0]:
In [0]:
anim_file = 'dcgan.gif'

with imageio.get_writer(anim_file,mode='I') as writer:
  filenames = glob.glob('image*.png')
  filenames = sorted(filenames)
  last = -1
  for i,filename in enumerate(filenames):
    frame = 2*(i**0.5)
    if round(frame) > round(last):
      last = frame
    else:
      continue
    image = imageio.imread(filename)
    writer.append_data(image)
  image = imageio.imread(filename)
  writer.append_data(image)
  
import IPython
if IPython.version_info > (6,2,0,''):
  displya.Image(filename=anim_file)
In [0]:
try:
  from google.colab import files
except ImportError:
  pass
else:
  files.download(anim_file)




Epoch당 결과물을 Gif로 만들어 생성 과정을 살펴볼 수 있습니다.




728x90
반응형