🐍Python/Pandas

[Pandas] Pandas02 - EURO12 풀이

728x90
반응형

Step 1. Import the necessary libraries

->import pandas as pd

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called euro12.

euro12

Step 4. Select only the Goal column.

-> euro12.Goals

A : 0      4
1      4
2      4
3      5
4      3
5     10
6      5
7      6
8      2
9      2
10     6
11     1
12     5
13    12
14     5
15     2
Name: Goals, dtype: int64

Step 5. How many team participated in the Euro2012?

-> euro12.Team.value_counts().count()
    #or    
    euro12.shape[0]

A : 16

Step 6. What is the number of columns in the dataset?

-> euro12.shape[1]

A : 35

Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline

-> discipline = euro12[['Team','Yellow Cards','Red Cards']]
    discipline

A : 


Step 8. Sort the teams by Red Cards, then to Yellow Cards

-> discipline.sort_values(by=['Red Cards','Yellow Cards'],ascending=False)

A : 


해설 : sort_values()로 indexing한다. by를 통해 기준을 정함

Step 9. Calculate the mean Yellow Cards given per Team

-> round(discipline['Yellow Cards'].mean())

A : 7

해설 : round로 소수점을 반환한다. 

Step 10. Filter teams that scored more than 6 goals

-> euro12[euro12['Goals']>6]

A: 

Step 11. Select the teams that start with G

-> euro12[euro12.Team.str.startswith("G")]

A : 

해설 : string을 고르고 startwith()로 indexing 한다.

Step 12. Select the first 7 columns

-> Euro12.iloc[ : , 0:7 ]

A : 

해설 : slicing하기 위해 Iloc을 사용한다.  : 는 전체를 0:7은 0~7을 의미한다. Col = 7

Step 13. Select all columns except the last 3.

-> euro12[:-3]    
    #or
    euro12.iloc[: , :-3]

해설 : col = 32개 나옴. -로 지정해서 마지막 3개를 제외시켰다.

Step 14. Present only the Shooting Accuracy from England, Italy and Russia

-> euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']]

A: 

해설 : loc은 col의 label로 slicing하는 방법이다. isin으로 col을 선택하였다. 


728x90
반응형