728x90
반응형
제 11강. 벡터투영과 최소제곱법
=
=>
투영의 개념과 최소제곱법의 개념이 한 번에 다 들어가있다.
Projections and Least Squares
- For more equations than the unknowns, there is usually no solution.
=> Overconstrained cases ( mxn matrix ( m > n ) )
- How to find an optimal Solution ?
=> minimizing errors ( 거리의 개념으로 다가가기 )
Least square solution of 1 unknown -> projection onto the line a
- Orthogonality of a and e
-> The error vector connecting to must be perpendicular(수직) to
Least square problems with several variables
to project b onto a subspace ( m x n : A ( m > n ) )
: solution of least squares to minimize
(1) Since column space is perpendicular to left nullspace, is m the left nullspace
or
(2) The error vector must be orthogonal to each column vector
들을 로 표현할 수 있다.
Normal equation = ( 역행렬 있는지 모를 때 )
Best estimate for invertibility of =>
Projection =>
Remark 1.
if is in ->
The projection of is still
vector안에 존재해서 가까운게 자기 자신임
Remark 2.
If is perpendicular to every column
-> in left nullspace
-> projected onto zero
Remark 3.
is square & invertible =>
Least squares Fitting of Data
some observation errors -> not exactly fitted
을 minimize 하는 것이다.
이것이 결국 로 표현이 되는 것이다.
728x90
반응형